If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9900=20x+2x^2
We move all terms to the left:
9900-(20x+2x^2)=0
We get rid of parentheses
-2x^2-20x+9900=0
a = -2; b = -20; c = +9900;
Δ = b2-4ac
Δ = -202-4·(-2)·9900
Δ = 79600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{79600}=\sqrt{400*199}=\sqrt{400}*\sqrt{199}=20\sqrt{199}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{199}}{2*-2}=\frac{20-20\sqrt{199}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{199}}{2*-2}=\frac{20+20\sqrt{199}}{-4} $
| 6(h+5)=18 | | 11k-22=15k+1 | | 0.8x+5000=0 | | 2/2-3x=-2/4x | | 0.5k=100 | | 0=-3/2x+17 | | 36r=108 | | 2-3x+2x=6 | | -48=4(14a+5) | | 3x+4=x14 | | 2(x+2)+4=12 | | 2x+4x=(-36) | | 2x×5+8x-7=6x-14-x+2 | | d-(-16)=-32 | | w+(-12)=137 | | a=91-4 | | k+42=-15 | | m-18=-63 | | 9x+19=6x+46 | | 7x+13=5x+33 | | -x+9=-2x+19 | | 5.555+n=15 | | 492/3+t=3002/3 | | 3x+16=x+34 | | 2(x+1)-3(2-x)=x+(2x+1) | | 5x/2+4=2x-5 | | 1/2m+2/3=1/3m-2/3 | | 15–3a=45 | | 3(3x+1)+6=27 | | √(3p+22)-4=0 | | 8x+20=6x+26 | | 2(x+1)-3(2-2)=x+3(22+1) |